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Abstract: Brain activity can predict a person’s level of engagement in an 
attentional task. However, estimates of brain activity are often confounded 
by measurement artifacts and systemic physiological noise. The optimal 
method for filtering this noise – thereby increasing such state prediction 
accuracy – remains unclear. To investigate this, we asked study participants 
to perform an attentional task while we monitored their brain activity with 
functional near infrared spectroscopy (fNIRS). We observed higher state 
prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was 
filtered with a non-stationary (adaptive) model as compared to static 
regression (84% ± 6% versus 72% ± 15%). 
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1. Introduction 

Previous findings from functional magnetic resonance imaging (fMRI) suggest that distinct 
networks of the human brain underlie attention to external and internal events. First, the 
“task-positive” network (TPN), which includes the dorsolateral prefrontal cortex (DLPFC), 
dorsal anterior cingulate cortex, superior and inferior parietal lobe, and anterior insula, is 
thought to enable attention to external task-relevant stimuli and responses [1, 2]. Consistent 
with this view, activity in this network increases when participants perform a task as 
compared to when they rest [1, 2]. Second, the “task-negative” network (TNN), which 
overlaps with the Default Mode Network and includes the anterior medial frontal gyrus 
(MFG), posterior cingulate cortex, and certain regions of lateral parietal cortex, is thought to 
enable internal attention to thoughts, emotions, and daydreams [3, 4]. In line with this view, 
activity in this network increases when participants rest as compared to when they perform a 
task [3–5]. 

Since the TPN and the TNN underlie distinct aspects of attention, it is not surprising that 
key regions of these networks interact. Functionally-connected activity in the TPN and the 
TNN is often negatively correlated [5–7]. It is unclear whether this anti-correlation reflects 
competition for limited resources [6], intrinsic competitive interactions in the brain [5], or the 
need to suppress one network (e.g., the TNN) when the other is active (e.g., the TPN). 
However, such network interactions are ubiquitous across different studies and populations 
[4, 8]. Further, interactions between key regions of the TPN and TNN vary with task 
engagement – as indexed by reaction time – in attentional tasks [9]. In sum, both (1) activity 
in the TPN and the TNN and (2) interactions between key regions of these networks vary with 
the degree to which participants are engaged in performing a task. Monitoring brain activity 
in key regions of the TPN and TNN may therefore allow researchers to distinguish between 
high and low levels of task engagement [10–13]. 

The ability to make this distinction in the real world is important for detecting and 
avoiding performance decrements during safety-critical operational tasks. As we have 
discussed previously [13], such tasks include commercial aviation, air traffic control, space 
walks, performing surgery, and driving. Since accident-causing errors can be made even by 
skilled professionals [14], monitoring brain activity for signs of low task engagement in real 
time could serve as an “early warning system” for detecting and preventing performance 
errors before they occur. For instance, to promote optimal human performance, intelligent 
flight decks of the future could monitor for changes in brain activity that typically signal low 
levels of task engagement. If such changes are observed when they are inappropriate given 
the operational context, mitigation could be attempted. In more general applications, the 
ability to detect such cognitive lapses, perhaps due to long duration monitoring, sleep-
deprivation [11, 15], distraction [16], fatigue [17], combat [18] or divided attention [19, 20] 
could be useful for avoiding significant errors. 

Given the considerations above, the goal of the present study was to quantify and improve 
the ability to use brain activity to predict a person’s level of task engagement. To this end, we 
asked study participants to perform an attentional task while we measured their brain activity 
with functional near infrared spectroscopy (fNIRS). FNIRS is an optical neuroimaging 
technique that measures hemodynamic activity in the brain. This technique is relatively low-
cost, non-confining, non-invasive, and safe for repeated or long-duration monitoring of brain 
activity [21–25]. It also offers sub-second temporal resolution and acceptable spatial 
resolution (about 1 cm2) [26–28]. Further, measures of brain activity made with fNIRS are 
consistent with those made with fMRI [24, 25, 29–32] and electroencephalography (EEG) 
[33, 34]. Of importance for present purposes, activity in key regions of the TPN and the TNN 
can be measured with fNIRS because these regions reside in the cortical, or “outer”, layers of 
the brain. 
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It is also important to mention that, due to its portable nature, fNIRS allows neuroimaging 
in the field. Cognitive state measures based on fNIRS [13, 35–38] could therefore be used to 
optimize human performance during operational tasks (e.g., by informing computer software 
for automation or a human operator of a potentially hazardous psychological state). Other 
ambulatory brain measurement techniques such as EEG can quantify electrical brain activity 
in the field as well, but fNIRS offers a measure of localized hemodynamic response. This 
may produce synergistically complementary information in a multi-modal attentional 
monitoring system that also includes EEG sensors. Before exploring such a system, however, 
we first investigate the capabilities and most appropriate methods for the unimodal use of 
fNIRS. Along these lines, fNIRS has already been employed to measure brain activity during 
driving simulations [39] and to develop a robot that adapts to the cognitive state of a human 
operator [40]. Further developing the ability to predict a person’s level of task engagement 
using fNIRS would also support the development of an effective means for monitoring, or 
optimizing, a pilot’s level of task engagement during flight. Thus, the ability to predict a 
person’s level of task engagement is of particular importance to aviation safety [41, 42]. 

However, the best signal processing methods for accomplishing this objective have not 
been fully explored and are far from standardized [43]. In the present study, we moved further 
toward the objective of predicting task engagement using fNIRS by exploring various 
approaches for increasing the signal to noise ratio of fNIRS signals and thus improving the 
predictive power of fNIRS-based cognitive state classification systems. In particular, we 
quantified state prediction accuracy using various fNIRS signal processing methods to 
identify which method produced the highest accuracy for predicting a participant’s level of 
engagement in an attentional task. Building on prior work showing that fNIRS can be used in 
the laboratory to predict a participant’s level of engagement in an attentional task (using 
activity in the TPN and the TNN [13]), we monitored brain activity in two key regions of 
interest – the DLPFC in the TPN and the MFG in the TNN – while participants alternated 
between performing and not performing a complex attentional task. Processing was 
conducted by filtering changes in hemoglobin concentration across time in multiple ways, 
including static and adaptive regression to remove concurrently-measured physiological 
noise. Finally, we employed multivariate pattern classification techniques using the processed 
hemoglobin time series in the DLPFC and MFG regions to distinguish between high levels of 
task engagement (i.e., performing a task) and low levels of task engagement (i.e., resting) for 
each processing method employed. We observed higher prediction accuracy when noise from 
hemoglobin concentration ([Hb]) signals was filtered with adaptive as compared to static 
regression. This finding extends our understanding of how existing noise removal methods 
influence the ability to predict a person’s level of task engagement. More specifically, our 
findings reveal that the ability to predict attentional state from fNIRS data can be enhanced by 
employing adaptive regression methods. 

The signal processing methods we explored included adaptive regression techniques 
because there may be a non-stationary relationship between (a) noise in the superficial layers 
and (b) the as-measured, deep signals of interest in the brain. This variation over time and 
space could complicate the contribution of nuisance physiological changes to deep signals of 
interest [44–48]. Standard regression is useful for the removal of such noise, but not allowing 
beta fit parameters to change in time can limit the effectiveness of this technique. Given a 
good model of the expected task-related activations, it should be possible to better identify 
dynamic noise in the signals for removal at each time instance. Adaptive estimation attempts 
to model these variations by allowing restricted temporal variations of the model parameters. 
Therefore, we explored an adaptive time-point-by-time-point general linear model (GLM) to 
dynamically filter out non-static physiological noise as in [44] using the short-distance 
channel measurements as regressors (see [49] for a recent example of a similar variable 
regression technique applied in a fMRI study). 
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Dynamic or adaptive filters have previously been implemented for processing fNIRS data. 
In one study, a state space model was used with a Kalman filter to estimate simulated 
responses added to real auxiliary physiological (noise) data that were collected during rest 
(using simulated responses but short separation measures) [47]. In a second study, an adaptive 
GLM was implemented with a Kalman filter to classify right vs. left single-trial finger 
tapping after removing physiological noise from measured response signals by modeling the 
cardiac signal, respiration and Mayer waves (using long separation measures and modeled 
short separation signals) [44]. In a third study, a GLM was implemented with a Kalman filter 
using measured short source-detector separation signals and simulated task responses. The 
results showed that adaptive filtering improved recovery of the hemodynamic response (using 
simulated long separation signals and short separation measures) [50]. Moreover, a follow-up 
study revealed that double short separation measures further improve filter performance 
(using both simulated and measured long and short separation signals during finger tapping) 
[51]. 

In yet other investigations, a tapped delay filter (with coefficients optimized on a sample-
by-sample basis and [HbR] filtered separately from [HbO]) [45] was used to recover the 
hemodynamic response to a visual task by additively regressing out short source-detector 
separation channel measurements from visual response measurements). For example, Zhang, 
et al. [46] showed that measurements with poor signal to noise ratios do not benefit from such 
filtering, that such filtering can degrade the recovered signal of interest if that signal is not 
dominated by “global interference” or physiological contributions, and that such filtering 
improves contrast for [HbO] only. Finally, a channel-by-channel adaptive GLM was 
implemented with fNIRS data by Aqil, et al. [52] who used a recursive least squares 
estimation method to recover the hemodynamic response to a finger tapping task. The present 
study applies an adaptive Kalman filter using measured fNIRS data for both the noise and the 
task response to be recovered and applies adaptive filtering methods to a cognitive attention 
task that is more complex than the tapping and visual tasks used in prior studies. 

2. Methods 

2.1 Behavioral methods 

Data were collected as specified in a protocol that was approved by Institutional Review 
Boards at the University of Michigan Medical School and NASA. Informed written consent 
was obtained from all participants (seven healthy adults (3 female, 4 male); age range: 21-50 
years). 

Brain activity was recorded with fNIRS in two regions of interest (DLPFC and MFG) 
with fMRI-compatible head probes during simultaneous fNIRS-fMRI scanning (fMRI results 
to be reported separately). During fNIRS recording, participants performed an attentional task 
in four 400-second-long runs. All participants were right-handed, with the exception of a 
single participant who was ambidextrous as determined by self-report. If vision correction 
was needed, participants wore either their own contact lenses or MR-compatible corrective 
lenses. 

To facilitate our ability to distinguish between high and low levels of task engagement, we 
asked participants to alternate between performing a modified version of the multi-source 
interference task (MSIT) [53, 54] and resting (i.e., not performing a task). During rest, 
participants were instructed to look at a crosshair and think of nothing in particular. The 
MSIT is a selective attention task in which optimal performance requires participants to 
suppress multiple sources of interference. It reliably and robustly activates the TPN, even in 
individual task blocks from the same participant [53]. Given these characteristics, we 
reasoned that the task protocol would induce relatively high (during the MSIT) and relatively 
low (during rest) levels of external, goal-oriented task engagement, thereby providing a strong 
signal with which to monitor task engagement. 
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In each trial of the MSIT (duration, 2 seconds), participants viewed a horizontally-
oriented array of four digits at the center of the screen (duration, 1 second). A target digit was 
printed in a larger font than each of three distracter digits (72 point vs. 60 point). The stimulus 
sizes were chosen to make the digits visible within the MRI scanner. Moreover, the large 
target digit was chosen to be about 20% larger than the small distracter digits to make the task 
sufficiently difficult, as we have described previously [13]. The task was displayed at the end 
of the scanner behind the participant’s head and viewed through a mirror. 

Participants were instructed to identify the target digit in each trial (1, 2, 3, or 4) by 
pressing the key which corresponded to the spatial position (1st, 2nd, 3rd or 4th from left to 
right) of the target digit with one of four fingers (1 = right thumb, 2 = right index finger, 3 = 
right middle finger, 4 = right ring finger) as quickly as possible without making mistakes. 
Half of the trials were congruent, and the other half were incongruent. In congruent trials, 
both the spatial position of the target and the identity of the three distracter digits were 
mapped to the same response as the target (1111, 2222, 3333, 4444; bold font indicates the 
target digit, which was larger than the other digits). In incongruent trials, both the spatial 
position of the target and the identity of the three distracter digits were mapped to a 
conflicting response, such as a 2 in the 1st position or a 4 in the 3rd position (2111, 2122, 
3343, 4443). To prevent stimulus and response repetitions from occurring in consecutive 
trials [55, 56], the stimuli were composed of the digits 1 and/or 2 in odd trials of each block 
but of the digits 3 and/or 4 in even trials. Responses were recorded via a MR-compatible 
response device (Psychology Software Tools, Inc., Sharpsburg, PA). The task was 
implemented using a combination of MATLAB [57] and the Psychophysics Toolbox [58]. 

Trials were presented in a block design wherein periods of performing the MSIT 
alternated with periods of rest. In each of four runs (run duration, 400 s), an initial 16 s rest 
block was followed by 12 alternations between the MSIT (16 s, 8 trials per block) and rest (16 
s). Thus, each run contained 96 trials. All participants practiced the behavioral task with 
performance feedback for 1 minute at the beginning of the study. 

2.2 fNIRS data acquisition methods 

Data were acquired with an Imagent NIRS instrument and fiber optic cables (ISS, Inc., 
Champaign, IL). Light was sourced using laser diodes at 690nm and 830nm. Changes in 
optical intensity were detected with photomultiplier tubes. Using continuous wave analysis 
with the DC component of the detected signals, time traces of relative changes in the 
concentration of both oxygenated and deoxygenated hemoglobin species ([HbO] and [HbR], 
respectively) were produced for each source-detector pair (each optode). Standard 
calculations were made using the modified Beer-Lambert law [21, 59–61]. Differential path 
length factor values were 5.49 for the 690nm signals and 6.00 for the 830nm signals [62]. All 
analysis scripts were custom-written by the first author in MATLAB [57]. The data collection 
rate was 6.25 Hz. 

During each task run, 2500 time points were collected. NIRS sources and detectors, herein 
called optodes, were placed as shown schematically in Fig. 1 with respect to the International 
10-20 locations with the aid of an electroencephalography net and grease pencil markings on 
the participant’s head as described previously [13]. A measurement channel is defined as data 
collected from a particular source-detector pair. The array of probes used to interrogate the 
MFG contained two sources placed 3 cm from one detector between FPz and FP2. The array 
of probes used to interrogate the DLPFC contained four sources placed 3 cm from a second 
detector near F4. The line toward Fz was marked and the array rotated until it fell between 
optode channels 2 and 3. 

In NIRS, the penetration depth of a measurement channel increases with the distance 
between the source and detector. A common approach to separating superficial (shallow) and 
brain (deeper) signals uses a probe containing different channel distances. Signals with 
shallow sensitivity were collected using channels with a short source-detector separation 
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distance of 1 cm (producing a shallow signal dominated by physiology in the superficial 
tissue [50, 63]), while the deeper measurements used a long source-detector separation 
distance of 3 cm (producing a deep signal that samples the brain as well as superficial tissue). 
Both shallow and deep tissue measurements are very sensitive to physiological effects from 
superficial tissue, but to differing degrees [45]. Recent modeling work [64] has indicated that 
the optimum short source-detector separation to reduce brain sensitivity to 5% of the signal is 
8.4 mm, which is only 1.6mm less than the distance used in the current and many prior 
studies (including [50, 51]). Shallow signals from the DLPFC were detected on DLPFC array 
channel 4 near F4 while shallow signals from the MFG were detected on MFG array channel 
2 near FP2. Deep signals from the DLPFC were detected on DLPFC array channels 1, 2, 3 and 
5 while deep signals from the MFG were detected on MFG array channels 1 and 3. 

 

Fig. 1. Optodes used to interrogate the DLPFC and MFG. Source optodes (red) are arranged 
around detector optodes (green), shown schematically with respect to the International 10-20 
locations. 

We built fMRI-compatible probes using a combination of detector fiber bundles from ISS, 
Inc. and customized source fibers [36, 37]. Results based on simultaneously-recorded fMRI 
data will be reported separately. The headgear (see Fig. 2) performed well and was redesigned 
until compatible with all aspects of the fMRI laboratory environment. Prototype probe sets 
were scanned and any fMRI-artifact-generating material was replaced. The source fibers were 
450 micrometer core glass, and each detector was a 3 mm diameter glass fiber bundle. We 
employed glass right-angle prisms in periscope assemblies (see Fig. 3) to facilitate placement 
within the space limitations of the fMRI head receiver coil. Source fibers were held in place 
with a nylon set screw within the periscopes, which were machined out of black Delrin. 
Additionally, 3 mm diameter light pipes (15 mm in length and bonded to the other face of the 
prisms) provided offset for hair penetration and visual inspection of mark locations. Light 
pipe baffling all the way to the skin surface protected the measurements from ambient light 
exposure. The light pipes fit snugly through holes punched in hard rubber array holders as 
shown in Fig. 2. The array holders were designed such that each source-light pipe assembly 
could be individually adjusted with its own Velcro strap to allow for an individualized fit. The 
detector’s light pipe was inserted through the central hole. 

 

Fig. 2. Head probe arrays for the DLPFC (left) and the MFG (lower right). Prisms and light 
pipe assemblies (top right) were used with optical fibers. 
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Fig. 3. Schematic of the optical components used in the light pipe assemblies. 

The light intensity reaching a detector decreases exponentially as the distance from the 
source increases. Therefore, sources with shallow sensitivity at 1 cm may exceed the dynamic 
range. This may cause photo-damage to the detectors at gain settings appropriate for sources 
at 3 cm due to the lack of signal attenuation over their relatively shorter optical path length. 
To avoid this outcome without changing laser source intensity during the trial while the 
participant was wearing the probes, we reduced the delivered optical intensity for the shallow 
channel sources. Adjustment on a per-participant basis was effected quickly by layering 
optically absorbent pigment on partially-transmissive cosmetic tape between the ends of the 
fiber probe tips and the skin. Velcro straps as seen in Fig. 2 were adjusted for each source 
probe, and intensities were checked in an iterative fashion. If adjustments were required to 
facilitate the clearance of hair, the addition or removal of attenuating material over the 
shallow source probes, or the reattachment of probes such that they contacted the skin, each 
source could be adjusted independently (this dressing process was lengthy and inappropriate 
for operational situations). Participants tolerated indentations in the skin due to the probes. 
However, multiple indentations per probe were not seen upon removal, indicating the probes 
remained stationary. 

2.3 fNIRS data processing methods 

We wished to determine which fNIRS processing methods would provide the highest state 
prediction accuracy. We therefore describe here the temporal filtering and regression 
techniques that we used to process the time traces and thereby prepare them for use in 
classification. We implemented six different processing methods: (1) minimally-processed as-
measured, (2) static regression, (3) adaptive regression, (4) physiological, (5) physiology-
cleaned only static, and (6) physiology-cleaned only adaptive. 

In the static and adaptive regression methods described in sections 2.3.2 and 2.3.3 below, 
we relied upon our knowledge of the task being performed (e.g., stimulus onset times) to 
clean physiological noise and other artifacts. Investigating methods that make use of 
knowledge of the task being performed allowed us to quantify the capability of our attentional 
state prediction system in “best case scenarios” wherein this information is available. 

To explore the “real world” capability of our attentional state prediction system, we also 
estimated classification accuracy when our system was not provided with a priori knowledge 
of the stimulus onset times. Processing methods that did not make use of such knowledge 
were the as-measured (section 2.3.1), physiological (section 2.3.4), and both “physiology-
cleaned only” (pco) cases (sections 2.3.5 and 2.3.6). In each case, functional traces were 
produced for use as inputs in the classification to be described in section 2.4. As described 
next, the functional traces were cleaned of noise and of uninformative activity to varying 
degrees. We then used these cleaned traces to represent changes in functional brain activity in 
all subsequent analyses. Notably, for all of the methods below, we did not remove 
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physiological effects in the band-pass frequency range that were not apparent in the 
superficial tissue. 

2.3.1 fNIRS data processing case: as-measured 

Relative [HbO] and [HbR] changes were calculated using the filtered raw intensity 
measurements from the deep (3cm) signals as described in section 2.2 and then normalized by 
the signal variance [59]. Temporal band-pass filtering was used to focus on sustained task 
activations while removing very slow drift and higher-frequency physiological and motion 
contributions. More specifically, we employed a fourth-order zero phase Butterworth filter. 
The range from 0.008 Hz to 0.1 Hz was included to retain frequency components below 0.1 
Hz, which contribute to sustained task signals and to resting state hemodynamic signals of 
interest, while excluding slow drift. Since the hemodynamic response lasts much longer than 
an individual 2 s trial, we did not attempt to resolve hemodynamic responses to individual 
stimuli. Instead, we focused on the sustained task response across an entire block of trials. We 
were also interested in low-frequency hemodynamic and resting functional connectivity 
signal content [3, 7, 65]. Therefore, the processing described above for the “as-measured” 
method was also employed in the five remaining processing methods. As described next, 
however, the five remaining methods also employed additional processing procedures. 

2.3.2 fNIRS data processing case: static regression 

In the static regression case, we employed standard linear regression (i.e., a general linear 
model, GLM) to remove the contributions of nuisance variables to the as-measured signal. 
For example, better estimates of brain activity in the deep signal can be obtained by removing 
noise from the shallow signal. As described next, the GLM consisted of two types of 
regressors. 

First, we created “expected” functional task activity regressors by convolving a boxcar 
activity on-off function with a canonical hemodynamic response function (HRF) [66]. We 
predicted that expected task activity would include [HbO] increases and [HbR] decreases at 
the DLPFC location during the MSIT, and [HbO] increases and [HbR] decreases at the MFG 
location during rest. Put another way, while functional activity for the DLPFC channels was 
on during the task periods and off during the rest periods, functional activity for the MFG 
channels was off during the task periods and on during the rest periods. Therefore, the boxcar 
activity on-off function for [HbO] at the DLPFC was identical to that for [HbR] at the MFG. 
Analogously, the boxcar activity on-off function for [HbR] at the DLPFC was identical to that 
for [HbO] at the MFG. To the extent that the measured [Hb] changes reflected these predicted 
boxcar functions, we expected that the beta parameter estimates for the “expected” task 
activity regressors would be greater than zero. 

Second, we created additional “nuisance” regressors. To do so, we applied the same 
temporal band-pass filtering described in section 2.3.1. to the signal sources described in 
section 2.2, which were sensitive to shallow signals particular to each probe array [50, 63]. 
The resulting “nuisance” regressors allowed the removal of physiological noise (and other 
artifacts such as gross probe motion and ambient light exposure) from estimates of the 
sustained “task-related” signal coming from deeper signal measurements. Thus, the estimates 
of the functional task activity of interest (the functional traces to be used as classifier input 
features) were derived from a GLM that coded four signals in four independent regressors: (1) 
the expected task activity, (2) the shallow [HbO] trace, (3) the shallow [HbR] trace, and (4) a 
constant to model DC (or constant) offset. 

Cleaning signals via regression may help to prevent a researcher from interpreting low-
frequency physiological noise (e.g. Mayer waves [7, 67]) as reflecting low-frequency 
functional brain activity (either task-related or spontaneous). Accordingly, we removed 
unwanted physiological contributions to the signals of interest by subtracting a fraction of the 
shallow signal, which was determined by the GLM beta fit parameters for the respective 
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nuisance regressors. These fractions were determined once for the full time series in the static 
case described here. This is the principal difference between the static case and the adaptive 
case described in section 2.3.3, wherein the parameters change time point by time point. 

The static removal method is most appropriate when there is a sufficient correlation 
between the shallow signal and the deep signal [46]. However, the shallow signal may contain 
task-evoked responses originating in the superficial tissue due to the influence of the 
sympathetic nervous system on blood vessel diameter during cognitive responses [68], or due 
to some partial volume of sampled brain. Therefore, to avoid removing the effect of interest, 
we used two separate standard linear regression steps. First, after smoothing the measured 
shallow trace using a 6-timepoint (1 s) moving average, we employed regression to remove 
task-like responses from this trace. This was accomplished by modeling expected task activity 
as a nuisance regressor in a GLM wherein the measured shallow signal was the dependent 
measure. The expected task activity regressor weighted by the resulting beta fit parameter was 
subtracted from the measured shallow signal. The second regression step removed the 
residuals resulting from the first regression step (assumed to be noise) from the deep signal. 

Although the static removal method is typically performed within-species, with separate 
[HbO] and [HbR] filtering [46], shallow and deep traces can be produced by channels that 
sample different mixes of arterial and venous compartments. A probe’s sensitivity to one 
species or the other depends on whether it mostly samples the arterial or the venous 
compartment [69], which is likely to vary between probe applications due to changes in probe 
location. Additionally, physiological interference has been shown to be inhomogeneous in 
space [70, 71]. Since the shallow and deep probes sample nearby but different locations, they 
likely do not sample the same mix of arterial and venous compartments. Thus, the noise on 
the longer separation channels may represent a different mixture (i.e., linear combination) of 
[HbO] and [HbR] information compared to the shorter channels. To address this issue, we 
implemented the shallow trace removal with across-species terms. That is, the oxygenated 
and deoxygenated [Hb] traces from the short source-detector separation channel were 
regressed out of the as-measured traces of each Hb species from the long source-detector 
separation channel on the same detector array. 

In sum, the steps for calculating the functional traces were as follows. First, the expected 
task activity time trace was determined by convolving the HRF with the boxcar signal 
particular to each brain region (DLPFC, MFG) and Hb species ([HbO], [HbR]). Second, we 
created a design matrix with four regressors: (1) the expected task activity trace, (2) a DC 
offset trace, (3) a shallow [HbO] signal, and (4) a shallow [HbR] signal. The measured deep 
signal was set equal to the design matrix multiplied by beta (a 4-element column vector). The 
pseudo inverse function in MATLAB [57] was used to solve for beta (i.e., the four beta fit 
parameters). The functional traces that became the classifier features were determined by 
subtracting the three nuisance regressors weighted by their respective beta fit parameters from 
the measured deep signal. Finally, the beta fit parameter for the expected task activity 
regressor quantified the degree to which the functional response fit our model of the expected 
task activity. 

2.3.3 Adaptive regression methods 

As in the static regression case, we employed standard linear regression to remove the 
contributions of shallow nuisance variables from the deep as-measured signal. However, 
unlike in the static regression case, the GLM fit parameters varied time point by time point 
(cf. in the static case, these parameters were set once for all time points) using the adaptive 
regression methods described above. To differentiate this method from the static case 
introduced in section 2.3.2, we call it adaptive regression. 

To conduct the adaptive regression, we used a discrete Kalman filter [72]. Kalman 
filtering is commonly used to estimate the non-stationary underlying state of a system. Its 
recursive nature makes it attractive for real-time autonomous applications. For a detailed 
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introduction, the reader is referred to Welch and Bishop [73]. In brief, however, Kalman filter 
estimates of the model parameters at the current time point are based on a combination of (a) 
updates of these parameters from the immediately preceding time point and (b) the current 
experimental measurement. From one time point to the next, the model parameters are 
allowed to vary in a range around their previous values. The simplest model, and the one used 
in this work, assumes that these parameters are taking an isotropic random walk from one 
time point to the next with the covariance of the possible step sizes defined as Q. Q is called 
the process noise. At each time point, the estimate of the parameters is predicted from the 
preceding point (i.e. it is allowed to “wander” from its previous value) and this prediction is 
then compared to the actual measured data. The model parameter is updated based on the 
probability of this predicted value given the covariance of the parameter’s step in the random 
walk (Q) and the difference between the expectation of a measurement based on this 
prediction and the actual experimental data. 

The Kalman gain determines how much the model statistically favors the prediction made 
from the random walk verses the actual measurements, and depends on the process noise (Q) 
and the measurement noise (R). If the process noise (Q) is large, then the model is allowed to 
take big steps in this random walk and the actual measurement is more influential in 
estimating the model. When the process noise is small, the model takes very tiny steps and is 
slowly pulled over time by the actual measurements. In this later case, sudden large changes 
in the measurements such as those due to motion artifacts will have less of an effect on the 
model estimate. When Q is zero, the parameters are constant and the Kalman filter converges 
to the static regression solution. When R is small, the experimental measurements may be 
over-trusted and dynamic filtering will not be employed. At the other extreme, a very large R 
does not allow the experimental measurements to contribute to the estimate. 

In general, Kalman filters are usually tuned (by setting Q and R) somewhere between the 
two extremes to give performance that balances the use of dynamic filtering with use of the 
experimental measurements. For our study, a variety of values for Q and R were tested with 
an idealized response and actual experimental physiological measures. We selected values of 
Q and R that allowed for periods when the measurement was tracked and for periods when it 
was not tracked. Also, we selected values that avoided steeply-spiked state estimate traces, 
which are unexpected for hemodynamic responses. Q was set to 0.1 times the variance of the 
shallow physiological traces. The measurement noise covariance (R) was set to 10 times the 
variance of the difference between the measurement trace and the expected functional task 
activity. These settings were based on the entire time traces prior to adaptive regression, yet 
allow for some adjustment based on the actual experimental data for each participant and each 
run. We note that, for online processing, these quantities may be based on recent windows of 
data to base Q and R on real variance in the time-local noise. 

In our adaptive model, the [HbO] or [HbR] measurement is set to the observation matrix 
times the state, plus noise (with covariance R) associated with the measurement method itself. 
Stated in GLM terms, the observation matrix is the design matrix, and the state is a vector of 
the beta fit parameters. The measured signal, as in the static case, is the as-measured trace 
(filtered to include 0.008 Hz to 0.1 Hz). The observation matrix is four columns wide and the 
state vector has four components. The columns are populated with four regressors, the last 
three of which are nuisance regressors. These four column vectors are: (1) the expected task 
activity, (2) the shallow [HbO] trace, (3) the shallow [HbR] trace, and (4) a constant to model 
DC (or constant) offset (i.e., the same four regressors that we used in the static case). 

2.3.4 fNIRS data processing case: physiological 

Typically, systemic physiological confounds must be removed to avoid false positive results 
[74], as we have done in this study. However, if physiology detected in the shallow signal is 
due to task engagement, then these signals may be useful on their own as classifier input 
features. Indeed, task-evoked changes in systemic blood pressure and autonomic nervous 
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system responses do manifest in the skin layer [68], to which fNIRS is highly sensitive. For 
example, systolic blood pressure has been shown to increase and peak with task demand, and 
then decreases once the task is too challenging [75]. We call the signals simultaneously 
recorded using sources with shallow sensitivity the physiological traces. They are used 
without the first regression step described in section 2.3, which removed task effects. To test 
the possibility of predicting task engagement using detected physiology alone, these 
physiological fNIRS traces were used as classifier inputs. All four available [Hb] traces were 
used in this case; that is, the [HbO] and [HbR] traces on each of the two channels on which 
shallow signals were detected. 

2.3.5 fNIRS data processing case: physiology-cleaned only static 

To further explore the real world capability of an attentional state prediction system based on 
our methods, we explored static regression using nuisance regressors alone. We call this a 
“physiology-cleaned only” (“pco”) static case, since no a priori knowledge of task stimulus 
onset times is used in the processing. The shallow traces only are used as nuisance regressors 
without the first regression step described in section 2.3, which removes task effects. This 
case is abbreviated as “pco” and should not be confused with the physiology case introduced 
in section 2.3.4, wherein the shallow traces themselves are used as classifier inputs. Static 
GLM analysis as described in section 2.3.2 was employed, but with no expected task response 
regressor. The functional traces used as classifier input features for this case were generated 
using three nuisance regressors: the shallow [HbO] trace, the shallow [HbR] trace, and a 
constant to model offset. 

2.3.6 fNIRS data processing case: physiology-cleaned only adaptive 

The physiology-cleaned only (“pco”) adaptive case was similar to the physiology-cleaned 
only static case described in section 2.3.5. However, the GLM fit parameters were allowed to 
vary time point by time point using the adaptive methods described in section 2.3.3. 

2.4 Classification methods 

Classification was performed using the time traces produced as described in section 2.3 as 
input features to Support Vector Machines (SVMs). Scripts were implemented in MATLAB 
[57] using LibSVM [76]. For a brief introduction, the reader is referred to Burges [77] or 
Chang and Lin [78]. We choose SVMs for good performance with ease of implementation, 
flexibility in the number of input features, processing speed once trained (in the interest of 
future real-time application), and the ability to use tuning parameters to optimize feature 
separation for each participant. SVMs have shown potential for high accuracy during 
sustained activity with minimal training, and have been implemented in real-time fMRI 
methods [79]. 

A SVM classifier was trained (producing a SVM model) to discriminate relatively high 
(during the MSIT) from relatively low (during rest) levels of external task engagement (two 
classes of attentional state) using three of each participant’s four runs (20 minutes of training 
data). Its prediction accuracy was tested via leave-one-out methods on the participant’s fourth 
run. That is, the fourth run was “left out” of the training data set. All permutations were 
computed for each participant for each SVM model, such that the prediction accuracy could 
be determined for each of the 4 runs. The classifier output was defined to be −1 for rest if the 
prediction data were determined to be on the “rest” side of the hyperplane determined by the 
training data, and 1 if the prediction data were on the task, or “work,” side. The truth labels 
used for training and accuracy determination purposes were taken from the boxcar task 
function (see section 2.3.2), but shifted 4 seconds later to account for the delay of the 
hemodynamic response. In all cases, the data used for prediction were completely 
independent from the training data that were used to create the model. Training and prediction 
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were conducted within each participant. Finally, the training data were processed in the same 
manner as the to-be-predicted data. 

A total of twelve time-trace features (six optodes by two [Hb] species each) were 
available across both probe arrays. We pruned the number of features used for the purposes of 
improving accuracy [80]. Classification using fewer input feature traces may increase or 
decrease accuracy depending on the discriminatory information they contain. Classification 
including the lowest-ranked feature traces would allow more noise into the classification 
process, decreasing accuracy. Six traces were selected in each participant based on how well 
the static functional traces from the same optode-species combinations in the training data 
discriminated the task. This task discrimination was quantified using the F score [80]. Briefly, 
the numerator quantifies inter-class variance while the denominator is the sum of the within-
class variances. A larger difference between the classes and less variance within each class 
indicates better discrimination. The F score considers each training feature independently. 
Ranking according to this discrimination score was performed across all training runs used. In 
other words, we did not restrict the selection, for example, to four traces from the DLPFC 
array and two traces from the MFG array. The six optode-species combinations with the 
greatest discrimination scores were selected. Then, the same optode-species combinations 
were used for both training and predicting. All four available [Hb] traces were used in the 
physiological case (of section 2.3.4). 

There are two tuning parameters that must be selected prior to training. The optimal SVM 
model for each participant depends on selecting these parameters accurately. The first tuning 
parameter is c, which multiplies the cost of misclassifications during SVM model training. A 
lower c can produce a more flexible and generalizable SVM model by reducing the impact of 
misclassifications in exchange for finding a wider separation margin between the two classes. 
The second is Gaussian kernel parameter gamma (g), which determines the non-linearity 
associated with mapping the few input features into a new, multidimensional feature space 
[81] wherein the classes may be more separable. Not optimizing these parameters based on 
the training data may result in non-optimal classifier performance (poor predictive power 
where acceptable performance is achievable given the same training data). 

To determine the best possible prediction accuracy achievable for each participant in this 
study, c and g were tested at various selected values via leave-one-out methods to optimize 
accuracy. The highest classification accuracies produced, using the same set of parameters 
across all four runs (the same c and g for all permutations), were reported for each participant. 
The optimal c and g parameter pairs were not expected to be identical across participants. 
Tuning classifier parameters between participants allows individual differences to be taken 
into account for optimal accuracy. The fNIRS signals, and therefore the classifier input 
features and associated optimal classifier parameters, will be different for each participant. 
Since the optimal parameters depend on (1) the separability of the data and (2) the shape of 
the boundary between data points in the two conditions, or classes, the optimal c-g pair might 
vary across participants or optode applications. There is no reason to force the threshold 
separating the two classes to be the same across participants, unless one seeks to generalize 
and apply SVM models across participants, which was not the goal of the present study. 

Accuracy was determined by comparing the work or rest state predicted by the classifier 
for each instance to the known behavioral states (i.e., performing the task or resting) at that 
time. All statistical tests on classification accuracy values were one-tailed, with comparisons 
paired by participant. 

2.5 Spectral analysis methods 

The spectral content of the residual error traces was quantified for the as-measured, static and 
adaptive regression methods to check for components that were not effectively removed by 
the GLM described in section 2.3.2. The residuals (containing anything not explained by the 
model) were determined by subtracting all regressors (nuisance and expected activity) times 
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their beta fit parameters from the measured signal. All residual traces were averaged across 
the four runs for each participant prior to this analysis. The amplitude spectrum was 
computed via a Fast Fourier Transform (FFT) with 0.00152 Hz resolution. The largest peak in 
the frequency range of 0.0076 Hz to 0.0168 Hz was identified to investigate the amplitude of 
observable very low frequency components. The amplitudes for the static and adaptive cases 
were normalized to those of the as-measured trace for each participant. 

3. Results 

3.1 Behavioral results 

Seven participants completed four runs of the MSIT. As expected, mean behavioral accuracy 
was relatively high at 97.6% (SD = 2.3%, N = 7). Also as expected, performance was worse 
in incongruent than in congruent trials. A random effects analysis revealed that mean reaction 
time was significantly higher in the incongruent condition (M = 0.761 s, SD = 0.126 s) than in 
the congruent condition (M = 0.680 s, SD = 0.106 s), (t(6) = 7.6, p < 0.0005). Likewise, mean 
error rate was significantly higher in the incongruent condition (M = 3.91%, SD = 3.03%) 
than in the congruent condition (M = 1.43%, SD = 2.25%), (t(6) = 3.3, p < 0.01). Errors of 
omission were rare. One subject made a maximum of three omissions per run while all others 
made two or fewer omissions per run. 

3.2 Functional results 

The values of the static regression beta fit parameters (from case 2, static regression described 
in Section 2.3.2) quantify the activation and nuisance found on each channel. These 
parameters (averaged across seven participants) are presented in Fig. 4 ([HbO] traces) and 
Fig. 5 ([HbR] traces). They are organized by probe array location, species of Hb, run, and 
array channel. To produce these parameters, the measured [Hb] change time traces were 
regressed against the predicted functional task activity and nuisance regressors. Positive beta 
fit parameters from the GLM analysis would indicate that the measured changes in [Hb] 
reflected the predicted activity or nuisance activity that was modeled by each regressor. 

As described earlier, we hypothesized that task-evoked functional activity would differ 
between the DLPFC and MFG locations. At the DLPFC location, we hypothesized that 
performing the MSIT would be associated with [HbO] increases and [HbR] decreases relative 
to the rest condition. At the MFG location, we predicted that performing the MSIT would be 
associated with [HbO] decreases and [HbR] increases relative to the rest condition. As 
described next, both of these hypotheses were confirmed. 

 

Fig. 4. Average beta fit parameters quantifying the predicted activation and nuisance found on 
each channel for the static regression processing case are shown for [HbO] measures by 
location and run. Column numbers in each image scale plot correspond to probe array channel 
numbers. 
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Fig. 5. Average beta fit parameters quantifying the predicted activation and nuisance found on 
each channel for the static regression processing case are shown for [HbR] measures by 
location and run. Column numbers in each image scale plot correspond to probe array channel 
numbers. 

In Figs. 4 and 5, there are 16 image scale plots (two species by two array locations by four 
runs) with parameter values ranging from −1 to + 1. Columns 1, 2, 3 and 5 correspond to 
channels 1, 2, 3 and 5 on the DLPFC array. Columns 1 and 3 correspond to channels 1 and 3 
on the MFG array. Orange and yellow colors indicate parameter values greater than zero for a 
given channel, regressor, run, location and species being cleaned. The first rows of each plot 
(labeled “functional prediction”) show the parameter values for the predicted functional task 
activity. Not all channels showed the predicted functional task activity, and the species that 
did show activity was not consistent across channels. However, in line with our predictions 
above, Channels 3 and 5 showed the predicted functional task activity (i.e., positive beta 
values) for [HbO] on the DLPFC array. Also consistent, Channel 1 showed the predicted 
functional task activity for [HbO] on the MFG array. Finally, Channels 1 and 3 showed the 
predicted functional task activity for [HbR] on the DLPFC array. The magnitude of predicted 
functional task activity for [HbR] on the MFG array was not consistent across runs. 

The second, third and fourth rows of each plot show the parameter values for the shallow 
nuisance and constant offset to be removed. As discussed in section 2.3.2, we hypothesized 
that both the [HbO] and the [HbR] static regression beta fit parameters for the shallow 
physiological nuisance regressors would be greater than zero independent of the species of 
the measured trace being cleaned. Indeed, the measured traces may contain nuisance 
contributions stemming from variations in either species of [Hb] to varying degrees across 
locations. As predicted, the parameters were greater than zero for both species of the shallow 
nuisance regressors for both locations and both species of the measured traces of interest. 
However, this was most pronounced for the [HbO] traces of interest on the DLPFC array. 
These results can be seen by inspecting the yellow and orange colors in the second and third 
rows of the plots in Fig. 4 ([HbO] measures) and Fig. 5 ([HbR] measures). 

Activity in the very low frequency range (around 0.01Hz) was observed in both the static 
and adaptive regression residual traces. This is potentially attributable to intrinsic activity in 
resting-state, functionally connected networks [5, 65] or to very low frequency physiological 
confounds such as local vasomotion of the cerebrovasculature [82], either of which may 
contribute to signal content in this frequency range (0.01 Hz to 0.1 Hz). Aside from such 
signal content being treated as nuisance via the shallow traces, covariates in this frequency 
range were not included in our models. The spectral amplitude of this activity (calculated as 
described in section 2.5) was found to be significantly greater in the static (M = 0.86, SD = 
0.06) than in the adaptive residual traces (M = 0.27, SD = 0.08, (t(6) = 16.0, p<0.0005). 
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To further characterize the effect of the different processing methods, we present below 
the state prediction results enabled by each of the processed functional traces. 

3.3 State prediction results 

Our main goals were to (a) determine which fNIRS pre-processing method provides the 
highest accuracy of state prediction and (b) quantify classifier performance for each method 
employed. In these ways, we hoped to improve the ability to use brain activity to predict a 
person’s level of task engagement. Recall that we explored static and adaptive regression 
techniques as well as techniques that did or did not use a priori knowledge of the stimulus 
onset times. Processing methods that did not make use of the stimulus onset times were the 
as-measured, physiological and physiology-cleaned only cases. Further, two distinct 
physiology-cleaned only cases were investigated: static and adaptive. 

Table 1. State prediction accuracy and statistics for various fNIRS processing methods 
and features 

processing method: % accuracy SD  t(6) p < 
(3) adaptive 83.8 5.7  20.58 0.0005 

(2) static 71.8 14.8  6.11 0.0005 
(1) as-measured * 70.2 11.3  6.98 0.0005 
(4) physiological * 65.1 12.3  3.96 0.005 

(5) pco static * 64.7 7.4  5.23 0.005 
(6) pco adaptive * 62.0 9.5  3.32 0.01 

* no task knowledge used pco: physiology-cleaned only SD: standard deviation 

The resulting mean accuracies, standard deviations (SD) and statistical significance with 
respect to chance prediction at 50% (averaged across all 7 participants) are presented for each 
case in Table 1, where they are ordered by decreasing mean accuracy and labeled according 
to the scheme provided in Section 2.3. The range of percent accuracy of the SVM model 
within each participant in the adaptive case was 12% +/− 4% across c = 0.001, 0.01, 0.1, 1 for 
g = 0.1, and 11% +/− 6% across c = 0.001, 0.01, 0.1, 1 for g = 0.5. The best c-g pair was not 
consistent across participants. This underscores the importance of the tuning parameter 
optimization and selection described in section 2.4 on a participant-by-participant basis. As 
shown in Table 1, all of the functional feature traces generated classification accuracies that 
were significantly greater than chance prediction regardless of the processing method and 
regardless of the use of task knowledge. Thus, consistent with hypotheses, combining 
information about relative increases of [HbO] in the DLPFC and relative increases of [HbR] 
in the MFG, allowed us to classify whether participants were performing the MSIT or resting 
at above-chance levels of accuracy. We now discuss the results of each processing method in 
greater detail. 

Both the static and the adaptive cases used knowledge of the task, via the expected task 
activity regressors, to produce the functional traces used as input classifier features. As shown 
in Table 1, the functional traces produced via static regression generated a classification 
accuracy of 71.8% +/− 14.8% when averaged across all seven participants. This value was 
significantly greater than chance accuracy, (t(6) = 6.109, p<0.0005), but only 1.6% greater 
than the classification accuracy in the as-measured case. The functional traces produced via 
adaptive regression yielded a classification accuracy of 83.8% +/− 5.7%. This value was 
significantly greater than chance accuracy and 13.6% greater than the classification accuracy 
in the as-measured case. In fact, the adaptive case represents the best classification accuracy 
observed in the present study. All feature types produced via adaptive regression produced 
mean accuracies that were statistically significantly different from chance prediction. The 
classification accuracy for each participant and processing method is presented in Fig. 6. 
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Fig. 6. State prediction accuracy for seven participants with each bar representing one 
participant, for various fNIRS processing methods: as-measured, static, adaptive and 
physiological. Error bars show the standard deviation across the 4 runs. 

Exemplary plots of prediction data in the static case and the corresponding classifier 
outputs at every time instance for one run are presented in Fig. 7. Prediction accuracy was 
74.8% for this run, and three training runs were used to train the classifier. In the top panel, 
black markers at + 1 indicate the classifier output for a more engaged, ‘working’ state, while 
those at −1 indicate the classifier output for a less engaged, ‘resting’ state. A prediction is 
made at every instance. The dotted black line indicates the probability estimates of the 
classifier predictions. In the bottom panel, the six classifier input features (the processed data, 
selected as described in section 2.4) are plotted. Truth labels are indicated by the green task 
function in both the top and the bottom panels. 

Exemplary plots of prediction data in the adaptive case and of the corresponding classifier 
outputs at every time instance for one run are presented in Fig. 8 using the same markings as 
in Fig. 7. Prediction accuracy was 87.5% for this run, and three training runs were used. This 
is the same participant and run as in Fig. 7, and the same markers are used. 

The physiological traces - produced via method 4 described in Section 2.3.4 - were 
produced using no information about the task being performed and yielded the second-best 
accuracy in cases where no knowledge of the task was employed. The physiological traces 
generated a classification accuracy of 65.1% +/− 12.3% when averaged across all seven 
participants. This result was significantly greater than chance accuracy (t(6) = 3.963, 
p<0.005). 

 

Fig. 7. In the top panel, black markers at + 1 indicate a classifier output of a more engaged or 
‘working’ state, while those at −1 indicate a less engaged or ‘resting’ state. A prediction is 
made at every instance. The dotted black line indicates the probability estimates of the 
classifier predictions. In the bottom panel, the six classifier input features generated using 
static processing are plotted. Truth labels are indicated by the green task indicator function in 
both the top and bottom panels. 
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Fig. 8. In the top panel, black markers at + 1 indicate a classifier output of a more engaged or 
‘working’ state, while those at −1 indicate a less engaged or ‘resting’ state. A prediction is 
made at every instance. The dotted black line indicates the probability estimates of the 
classifier predictions. In the bottom panel, the six classifier input features generated using 
adaptive processing are plotted. Truth labels are indicated by the green task indicator function 
in both the top and bottom panels. 

The as-measured traces, discussed in section 2.3.1, produced the best classification 
accuracy of all cases in which no information about the task being performed was used. As 
shown in Table 1, classification accuracy was 70.2% +/− 11.3% when averaged across all 
seven participants and differed significantly from chance, (t(6) = 6.978, p<0.0005). 

The physiology-cleaned only functional traces produced via static and adaptive 
regression, respectively, generated classification accuracies of 64.7% +/− 7.4% and 62.0% 
+/− 9.5%, when averaged across all seven participants. The accuracy for each participant is 
not shown in the figures for these low-accuracy cases. 

After re-running the adaptive, static and as-measured classifications using only one run 
(6.7 minutes) of training data, classification accuracies were lowered by less than 3%. 
Further, the ranking by performance of these methods (from highest to lowest classification 
accuracy) was unchanged. 

The feature traces selected, as described in section 2.4, varied by participant and by run. 
All twelve possible traces appeared at least once in the top three most useful features (out of 
the six used) for at least one participant, and the same top three traces contributed in the same 
rank order for at least two of the four runs for every participant. Consistent with prior findings 
[13], neither [HbO] nor [HbR] traces dominated, and both brain regions (DLPFC, MFG) 
contributed informative features to the classification. More specifically, there were 93 
features from the HbO species and 75 features from HbR species. In addition, there were 103 
features from the DLPFC and 65 features from the MFG. 

4. Discussion 

4.1 Main findings 

The present study followed up on prior work showing it is possible to predict a person’s level 
of task engagement (i.e., performing a task or resting) by monitoring brain activity in the 
DLPFC (a core region of the task-positive network) and the MFG (a core region of the task-
negative network) [35]. In particular, we investigated which of several methods for 
processing fNIRS data, when combined with pattern classification methods, would yield the 
highest state prediction accuracy. Next, we describe our findings from each of these methods. 

We begin with the as-measured and physiology-cleaned only (pco) cases, which represent 
“real world” applications wherein information about stimulus onset times is generally not 
available. Among these cases, accuracy was highest in the as-measured case (70% +/− 11%), 
consistent with prior findings [13, 35]. Thus, the least pre-processed of the fNIRS signals was 
found to provide the best performance when knowledge of the task being performed (e.g., 
stimulus onset times) was not used. The physiological and pco cases provided lower 
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accuracy, likely resulting from the lesser amount of information in the classifier input features 
due to higher noise content. Consistent with this finding, the removal of shallow signals can 
reduce signal contrast if (1) it is applied inappropriately (e.g., when the signal is not 
dominated by physiological confound) [46] or (2) task effects (arising from skin or brain 
layers) cannot be removed from the nuisance regressors (as in the pco cases). Thus, it is 
perhaps not surprising that the physiological and both pco methods were outperformed by the 
minimally-processed as-measured traces. Given that greater physiological noise due to Mayer 
waves is to be expected when participants are sitting, pco methods may perform better due to 
all signals being more dominated by the same noise [46]. However, the lack of a strong model 
of the expected task activity would still be a hindrance to the pco methods. The shallow 
fNIRS traces themselves (method 4, physiological) produced the second-best accuracy for 
cases wherein no knowledge of the task was used. High levels of classifier performance in 
this particular case may be in part attributable to task-evoked effects in the superficial tissue, 
which have been reported elsewhere [68]. However, these effects were not reliable for all 
participants in our study. They may also be in part attributable to the short-separation distance 
being 1.6mm greater than the nominally optimal distance [64], resulting in unintended brain 
signal detection. Performance of 65% is above chance but still quite low. Therefore, this 
difference in distance was of limited impact. 

Moving on, classifier features that were produced using processing methods that 
employed knowledge of the stimulus onset times yielded the highest state prediction 
accuracy. Among these methods, dynamic filtering of noise via adaptive regression produced 
the highest accuracy. Within-participant classification accuracy for distinguishing between 
task engagement and rest was 84% +/− 6% with just 20 minutes of training data. Using a 
strong model for the expected brain activity in each brain region being interrogated, noise was 
more effectively removed and classifier performance was enhanced. 

While such a model may not appear applicable in the real world, information for such a 
model could be available during operational simulations and in intelligent operational 
environments of the future. Moreover, the increase of 14% in state prediction accuracy 
(relative to the as-measured case discussed above) may motivate efforts to obtain information 
about task timing from, for example, algorithms and sensors that detect specific brain 
activation patterns or even overt physical actions. On a related note, fewer training runs did 
not change the relative performance of the classification based on the processing methods. 
This is important to know when considering time-limited applications of these methods in the 
field. 

Further regarding classification results, feature ranking produced informative results. The 
selected, contributing traces (the six selected from the 12 available) were reasonably 
consistent across runs within participants, neither species dominated, and both regions 
contributed. This underscores the usefulness of employing multiple channels across the head 
for monitoring purposes, and discourages dismissing the [HbR] signal as less useful due to 
increased noise levels relative to [HbO]. Finally, we note that the superior performance of the 
adaptive filtering method indicates that information extraction is more likely to be limited by 
the non-stationary nature of physiological noise [44, 45, 47, 48] than by regional optode 
localization precision. 

While the functional results of the study supported our predictions and explained the 
positive classification results we obtained, the degree to which this support was observed 
varied across channels. This variability may indicate that not all deep channels have 
sensitivity profiles that are equally overlapping the brain volume of interest. It could also 
indicate that data quality varies across optodes, wavelengths, runs, and/or participants, 
thereby affecting the ability to extract activation information equally from every channel. 
Finally, it could indicate that some channels (e.g. channel 5 on the DLPFC array) more often 
overlapped arterial compartments across participants while other channels (e.g. channel 1 on 
the DLPFC array) more often overlapped venous compartments. Future studies should be 
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conducted to identify methods to further improve data quality [83] and reduce the variability 
we observed. 

Despite the variance across channels, data quality was improved by superficial noise 
removal and the reduction of very low frequency activity. As we predicted, in the static 
regression case evidence of mixing of the shallow contributions from each Hb species was 
seen for both species and at both the DLPFC and MFG regions. This mixing was most 
pronounced for the [HbO] traces at the DLPFC, and may be due to unequal sampling of 
arterial and venous compartments by each channel. Regressor beta fit parameters for both of 
the shallow nuisance regressors were found to be non-zero. Therefore, both contributed to 
each of the traces of interest, regardless of Hb species. This finding suggests that including 
only within-species shallow nuisance regressors in the static regression, as in some prior 
studies [45, 46, 50, 63], may be sub-optimal. Despite this improvement in the model used for 
shallow nuisance regression, static regression provided only a minimal increase in state 
prediction accuracy over the as-measured case across participants, and was far out-performed 
by the adaptive regression method. 

We also observed a significant reduction of the amplitude of very low frequency activity 
in the adaptive regression residuals as compared to the static regression residuals. This may 
indicate that peaks in the very low frequency range of the static regression residual traces are 
mostly due to un-modeled time-varying physiology, which is effectively removed by the 
adaptive processing method. An example of such physiology is vasomotion present in the 
vasculature of the shallow tissue. The fNIRS technique is very sensitive to changes in the 
superficial tissue, as its non-invasive nature inherently involves sensing of the vasculature in 
the skin and through the skull. Thus, it is highly sensitive to both systemic Mayer waves and 
local vasomotion [82]. Intrinsic resting state activity may also contribute to signal content in 
this frequency range, and such a contribution cannot be ruled out in the present study. If 
behavioral metrics, which are influenced by functional network activity [6, 12], correlated 
with low frequency activity, then low frequency activity could be attributable to functional 
network activations. However, we did not observe such a correlation, suggesting that the 
observed low frequency activity is not attributable to functional network activity. Whether 
variability in the very low frequency range is due to physiology or to varying intrinsic resting 
state functional activity, adaptive filtering effectively removed it, thereby allowing us to focus 
on task effects. 

4.2 Novelty and contributions 

The present work improves on prior methods [13] for predicting task engagement with 
fNIRS, which did not employ adaptive filtering. In particular, we report an extensive 
exploration of attentional state prediction based on various fNIRS processing methods and 
features that sheds light on how different processing methods perform. Quantification of 
classifier performance differences among these methods informs analysis decisions for future 
state prediction studies. We successfully applied existing adaptive filtering methods [44, 50], 
using both measured physiological nuisance traces from short-separation optodes and 
measured task-evoked hemodynamic responses as in [51], to the simultaneous detection of 
cognitive attentional responses in multiple regions of the brain in the context of functionally-
connected networks. Of importance, cognitive responses are not as reliable, robust and well-
characterized as motor and visual responses. Also, superficial tissue and the depth of the 
cortex of interest are inhomogeneous across regions of the brain. The effectiveness of 
adaptive techniques should not be assumed to be the same across tasks and regions without 
testing, as we have done here for an attentional task using the DLPFC and the MFG. Finally, 
we improved upon existing within-species physiological correction methods (separate [HbO] 
and [HbR] filtering) [46] to account for inhomogeneous sampling of arterial and venous 
vascular compartments across optodes as explained in section 2.3.2, and have shown that each 
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species of nuisance regressor makes some contribution to both species of the [Hb] signals of 
interest. 

4.3 Pros and cons of using a simple behavioral task model 

The adaptive regression method removes dynamic noise and performs well using our 
behavioral task model. This approach is especially useful in the present exploration of the 
TPN and the TNN, because functional connectivity involving these networks is dynamic. Put 
another way, activations in these networks are variable in both time and frequency. This may 
be due to noise or to variations in cognitive state on the scale of seconds to minutes [84–86]. 
Notably, such variability, if not modeled, can confound the measurement of task effects. 
Indeed, short time windows have been used to assess the correlation of fMRI Blood-Oxygen-
Level Dependent (BOLD) time series in these networks to better understand the relationship 
between variable network connectivity and behavior [87]. Also, the temporal synchronicity of 
functionally connected networks, which would have to be variable to function as such, has 
been proposed as an integrating mechanism for introspective and extrospective functions [88]. 
Dynamic filtering, by means of adaptive regression, allows such variable activations to be 
accounted for, thereby improving the removal of noise and the detection of activation changes 
that are due to variations in internal and external attention. 

However, some limitations of the present study result from the simplicity of our model for 
expected task-evoked network activation. In particular, the model does not allow flexibility 
for states other than the two expected ones. Thus, higher state prediction accuracy in the 
adaptive case may stem from the fact that we are forcing the classifier features (i.e., the 
functional traces and the features created using these traces), via GLM analysis at each time 
point, to adhere more closely to the expected two-state system. 

Such a model, accounting for only negative correlation in either of the on-task or off-task 
states, is perhaps too basic. Internally-guided thought and the dynamic nature of functional 
connectivity between the TPN and TNN should be considered in the task model rather than 
discarding the related activations as noise. Internally-guided or task-unrelated thoughts were 
uncontrolled in the present study beyond instructing the participant to perform the task or to 
“think of nothing in particular.” Corrections for variability due to mind wandering [89, 90] 
during task execution were not employed. This is important because network co-activation, 
and therefore positive correlation, is expected during internally-guided thought [91, 92]. 

Finally, network correlation may differ depending on the time scale across which it is 
measured. This dynamic nature of functional connectivity [84–87, 93] presents further 
complications for making moment-to-moment predictions using a model based on static or 
larger time scale measures. Hemodynamic activations in the TPN and TNN are not neatly 
driven to be more or less anti-correlated in the on-task vs. off-task state at the single-
participant, moment-to-moment level. Indeed, Kelly et al. [6] describe tightly-coupled anti-
correlated network activations that explain the variance of overall participant performance 
levels, not participant performance on a moment-to-moment or time-windowed basis. Thus, 
accounting for network co-activation and for the possibility of dynamic functional 
connectivity both provide useful avenues for improving the behavioral task model that we 
employed in the present study. 

5. Conclusion and future work 

By employing various fNIRS processing methods and multivariate pattern classification 
techniques, we successfully distinguished between periods of task performance and periods of 
rest. We also applied adaptive regression techniques for fNIRS to the recovery of real 
cognitive task-evoked responses at multiple regions from measures that were contaminated by 
dynamic physiological artifacts. These artifacts and nuisance signal contributions were 
prominent on both hemoglobin species, likely originating in superficial tissue to which fNIRS 
is highly sensitive. Our cross-species correction techniques may therefore be used to improve 
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the predictive power of attentional state monitoring and other fNIRS-based systems. 
Interesting future work includes quantifying and comparing functional response recovery with 
and without the cross-species correction. 

Classification accuracies of 84% in the present study were achieved using SVMs, a known 
model of expected task activity, and improved noise-removal techniques relative to prior 
work [13]. This represents the maximal capability of an attentional state monitoring system 
based on the present methods. These results may be useful for informing decisions and 
warranting future investments in the development and use of such systems. Further, it would 
appear that classification accuracy is limited more by the availability of appropriately-
complicated task models and the removal of dynamic noise than by regional optode 
localization precision. The ability to identify noise and remove it while leaving the activation 
of interest sufficiently intact is limited without a model of task activity. Without such a 
model, the highest classification accuracy we observed was 70%. This level of accuracy is 
likely insufficient for monitoring and predicting cognitive state using fNIRS alone in real-
world applications. Given that participants were lying in an MRI scanner during data 
collection, contributions from confounding Mayer waves are expected to be greater when 
participants are seated, and greater still while they are standing [43]. Ambient light and 
motion artifacts can be expected to be greater as well. Therefore, further work must be done 
to assess physiological nuisance removal and the resulting cognitive state classification 
performance in these contexts. 

Improvements in accuracy could be made in several ways. First, measuring task activity 
for the purposes of modeling it could aid noise removal and thus improve classification 
accuracy. This could be done by detecting behavioral performance or physical activity during 
task performance. Second, increasing the amount and quality of training data could improve 
classification accuracy, although the relatively small reduction in accuracy that we observed 
with shorter classifier training time is encouraging for more time-efficient and simpler 
operational use. Third, using multi-modal sensing in ensemble classification could provide 
additional information to the classifier, which could lead to improved classification 
performance. Fourth, future work implementing a more complicated model of network 
activity could improve classification accuracy. Finally, other classification methods should be 
explored, addressing cross-time and cross-task generalizability of the classifier models. 
Regardless of these potential improvements, we note that the present techniques are ready for 
investigations in which hemodynamic measures synergistically complement EEG and other 
psychophysiological measures in multimodal classification schemes [94]. 

The improved ability to monitor cognitive state for low levels of task engagement that we 
demonstrate here may also be applied in increasingly realistic simulations, and toward 
assessing the efficacy of countermeasures aimed at improving operational performance. 
Further, the portability of fNIRS, especially when coupled with real-time signal analysis and 
classification, enables the use of task engagement detection in clinical outpatient monitoring 
or treatment protocols, biofeedback training, or other brain-computer interface (BCI) 
applications [43, 95]. We conclude that fNIRS could prove quite useful for monitoring 
cognitive state in many real-world settings. 
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